Newton-based optimization for Kullback–Leibler nonnegative tensor factorizations
نویسندگان
چکیده
منابع مشابه
Newton-Based Optimization for Nonnegative Tensor Factorizations
Tensor factorizations with nonnegative constraints have found application in analyzing data from cyber traffic, social networks, and other areas. We consider application data best described as being generated by a Poisson process (e.g., count data), which leads to sparse tensors that can be modeled by sparse factor matrices. In this paper we investigate efficient techniques for computing an app...
متن کاملNewton-based optimization for Kullback-Leibler nonnegative tensor factorizations
Tensor factorizations with nonnegative constraints have found application in analyzing data from cyber traffic, social networks, and other areas. We consider application data best described as being generated by a Poisson process (e.g., count data), which leads to sparse tensors that can be modeled by sparse factor matrices. In this paper we investigate efficient techniques for computing an app...
متن کاملAn All-at-Once Approach to Nonnegative Tensor Factorizations
Tensors can be viewed as multilinear arrays or generalizations of the notion of matrices. Tensor decompositions have applications in various fields such as psychometrics, signal processing, numerical linear algebra and data mining. When the data are nonnegative, the nonnegative tensor factorization (NTF) better reflects the underlying structure. With NTF it is possible to extract information fr...
متن کاملAlgorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework
We review algorithms developed for nonnegativematrix factorization (NMF) and 1 nonnegative tensor factorization (NTF) from a unified view based on the block coordinate 2 descent (BCD) framework. NMF and NTF are low-rank approximation methods for matri3 ces and tensors in which the low-rank factors are constrained to have only nonnegative 4 elements. The nonnegativity constraints have been shown...
متن کاملAlternating Optimization Method Based on Nonnegative Matrix Factorizations for Deep Neural Networks
The backpropagation algorithm for calculating gradients has been widely used in computation of weights for deep neural networks (DNNs). This method requires derivatives of objective functions and has some difficulties finding appropriate parameters such as learning rate. In this paper, we propose a novel approach for computing weight matrices of fully-connected DNNs by using two types of semi-n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optimization Methods and Software
سال: 2015
ISSN: 1055-6788,1029-4937
DOI: 10.1080/10556788.2015.1009977